期刊专题

10.13190/j.jbupt.2016-221

使用有序词语移动距离特征进行中文文本蕴含识别

引用
提出了一种基于有序词语移动距离的中文文本蕴含识别方法,该方法基于word2vec词向量计算有序词语移动距离特征,进而利用有序词语移动距离特征和传统语言学特征通过支持向量机生成分类模型,然后使用分类模型进行蕴含识别,最终得到蕴含结果.该方法在RITE-VAL评测任务的CS数据上的MacroF1为0.629,超过RITE-VAL的最优评测结果(BUPTTeam,0.615).实验结果表明,该方法可以提升中文文本蕴含识别系统的性能.

文本蕴含、word2vec、有序词语移动距离、SVM

40

TN911.22

国家自然科学基金项目U1536121,61370195

2018-01-12(万方平台首次上网日期,不代表论文的发表时间)

共6页

123-128

相关文献
评论
暂无封面信息
查看本期封面目录

北京邮电大学学报

1007-5321

11-3570/TN

40

2017,40(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn