期刊专题

10.13190/j.jbupt.2017.03.015

面向配电网故障数据的BIC评估后向选择方法

引用
10 kV配电网所处环境复杂,引发故障的原因很多,在使用数据挖掘方法对配电网故障进行分析时,太多的特征会对挖掘模型造成负面影响.为了防止挖掘模型考虑过多无用信息,需首先对数据进行特征选择来实现降维,因此提出了基于贝叶斯信息准则(BIC)的模型评估后向选择算法,对故障因素进行降维.BIC评估准则能够尽可能地简化模型,降低维度,而后向选择算法可以快速得到最优的简化模型,两者的结合提升了降维的速度,并能够得到更加简化的模型.实验结果表明,采用基于BIC评估的后向选择算法有助于后续模型准确性的提升,可提高训练效率.

配电网故障分析、降维、BIC模型评估、后向选择算法

40

TP3(计算技术、计算机技术)

国家高技术研究发展计划863计划项目2015AA050203;北京市自然科学基金项目4174099

2017-12-06(万方平台首次上网日期,不代表论文的发表时间)

共6页

104-109

相关文献
评论
暂无封面信息
查看本期封面目录

北京邮电大学学报

1007-5321

11-3570/TN

40

2017,40(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn