期刊专题

10.13190/j.jbupt.2016.04.005

MFWT:一种推荐学术论文的混合模型

引用
为了改善概率矩阵分解模型进行学术论文推荐时存在的数据稀疏性和冷启动问题,提出了一种混合推荐模型——主题矩阵分解模型.通过提出的作者-会议-时间-主题模型和传统的潜在狄利克雷分布主题模型分别构建用户和论文的主题特征,并通过这2类特征分别增强概率矩阵分解模型的用户潜在因子特征向量和项目潜在因子特征向量.实验结果表明,该模型较好地解决了概率矩阵分解模型的数据稀疏性问题和冷启动问题,有效提升了学术论文的推荐效果.

概率矩阵分解、主题模型、混合推荐模型、数据稀疏性

39

TN391(半导体技术)

国家自然科学基金项目61471060

2016-11-23(万方平台首次上网日期,不代表论文的发表时间)

共6页

24-29

暂无封面信息
查看本期封面目录

北京邮电大学学报

1007-5321

11-3570/TN

39

2016,39(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn