期刊专题

10.13190/j.jbupt.2016.01.005

协同过滤中有影响力近邻的选择

引用
数据稀疏性制约着协同过滤的推荐性能,为此,首先根据用户评分数量定义了用户的影响因子,在计算用户之间的相似性时,增加了影响因子衡量用户关系;其次,根据用户评分质量定义了有影响力用户群体.在此基础上,结合用户的评分数量和评分质量,使选择的有影响力近邻最大程度上作用于推荐过程.实验结果表明,所提方法能显著提高推荐性能.

协同过滤、有影响力近邻、评分数量、评分质量、数据稀疏性

39

TP311(计算技术、计算机技术)

国家自然科学基金项目61273292, 61303131, 51474007;教育部人文社会科学研究青年基金项目13YJCZH077;福建省高校新世纪优秀人才支持计划项目

2016-05-19(万方平台首次上网日期,不代表论文的发表时间)

共6页

29-34

相关文献
评论
暂无封面信息
查看本期封面目录

北京邮电大学学报

1007-5321

11-3570/TN

39

2016,39(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn