10.3969/j.issn.2095-6002.2018.04.014
基于K-means-RBF的鸡肉品质分类方法研究
鸡肉在贮藏和运输过程中容易腐败变质,利用高光谱成像技术的图、谱合一特点,同时获取鸡肉的光谱特征和纹理、颜色特征,通过鸡肉的内在特征与外在特征综合实现鸡肉品质快速分类.制备62份鸡胸肉样品,通过理化分析分为放心食用、可食用、不建议食用和不可食用4类;以已知分类结果的42个样品作为训练集,将纹理、颜色、光谱特征作为K-means-RBF神经网络的输入,确定K-means初始分类中心、训练RBF神经网络,构建K-means-RBF鸡肉品质分类模型,并利用剩余20个样品作为测试集,对K-means-RBF鸡肉品质分类模型进行测试.测试结果显示,通过训练后的K-means-RBF神经网络对20个测试集样品的分类正确率达到100%;而分别采用纹理、颜色和纹理颜色综合特征作为输入建立的分类器,正确率分别为85%、80%、95%.鸡肉品质分类成功利用了高光谱成像技术“图谱合一”的特点,实现了鸡肉品质的综合检测,验证了K-means-RBF融合方法在高光谱数据分析中的有效性,及单一特征在分类中的局限性.
鸡肉、高光谱、K-means-RBF、数据融合
36
TS251.7(食品工业)
国家自然科学基金资助项目61473009;北京市自然科学基金资助项目4122020;北京工商大学两科培育基金资助项目19008001270
2018-11-28(万方平台首次上网日期,不代表论文的发表时间)
共7页
93-99