期刊专题

10.3969/j.issn.2095-6002.2018.04.014

基于K-means-RBF的鸡肉品质分类方法研究

引用
鸡肉在贮藏和运输过程中容易腐败变质,利用高光谱成像技术的图、谱合一特点,同时获取鸡肉的光谱特征和纹理、颜色特征,通过鸡肉的内在特征与外在特征综合实现鸡肉品质快速分类.制备62份鸡胸肉样品,通过理化分析分为放心食用、可食用、不建议食用和不可食用4类;以已知分类结果的42个样品作为训练集,将纹理、颜色、光谱特征作为K-means-RBF神经网络的输入,确定K-means初始分类中心、训练RBF神经网络,构建K-means-RBF鸡肉品质分类模型,并利用剩余20个样品作为测试集,对K-means-RBF鸡肉品质分类模型进行测试.测试结果显示,通过训练后的K-means-RBF神经网络对20个测试集样品的分类正确率达到100%;而分别采用纹理、颜色和纹理颜色综合特征作为输入建立的分类器,正确率分别为85%、80%、95%.鸡肉品质分类成功利用了高光谱成像技术“图谱合一”的特点,实现了鸡肉品质的综合检测,验证了K-means-RBF融合方法在高光谱数据分析中的有效性,及单一特征在分类中的局限性.

鸡肉、高光谱、K-means-RBF、数据融合

36

TS251.7(食品工业)

国家自然科学基金资助项目61473009;北京市自然科学基金资助项目4122020;北京工商大学两科培育基金资助项目19008001270

2018-11-28(万方平台首次上网日期,不代表论文的发表时间)

共7页

93-99

暂无封面信息
查看本期封面目录

食品科学技术学报

2095-6002

10-1151/TS

36

2018,36(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn