期刊专题

10.16255/j.cnki.ldxbz.2022.04.010

基于PP-YOLO改进算法的脐橙果实实时检测

引用
深度学习已被广泛应用于智能采摘领域,消除不同环境场景对目标识别和检测产生的不利影响,对采摘机器人实现精准高效的工作至关重要.采用基于单阶段目标检测网络改进的PP-YOLO模型对树上成熟脐橙的识别进行研究,通过添加可变形卷积的主干网络ResNet提取特征,结合特征金字塔网络(FPN)进行特征融合,实现多尺度检测,并采用K-means聚类算法得到与目标脐橙适宜的anchor尺寸,减少训练时间及预测框置信度误差.实验结果表明:改进的PP-YOLO检测模型可完成晴天逆光、晴天顺光和阴天环境下的脐橙检测任务,检测准确率分别为90.81%、92.46%和94.31%,检测速度可达到72.30 fps、73.71 fps和74.90 fps,可以尝试在脐橙采摘机器人的研制中加以应用.

脐橙、目标检测、深度学习、改进的PP-YOLO

36

TP391.41(计算技术、计算机技术)

国家自然科学基金;江西省教育厅科学技术研究项目

2022-11-10(万方平台首次上网日期,不代表论文的发表时间)

共9页

58-66

相关文献
评论
暂无封面信息
查看本期封面目录

北京联合大学学报(自然科学版)

1005-0310

11-3224/N

36

2022,36(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn