期刊专题

10.3969/j.issn.1671-4628.2007.01.026

扰动KdV方程解的先验估计

引用
对于带微扰的KdV方程ut+6uux+uxx=εR(u),(ε>0),在初值u0(x)∈C∞(-∞,+∞),当|x|→∞时指数衰减的条件下,分别构造出带两种不同扰动项的KdV方程的扰动孤立波解满足的能量关系式,并运用能量分析方法对扰动的孤立波解进行先验估计,得到如下结论:(1)R(u)=δ(εt)u,δ(s)∈C[0,+∞),δ(0)=0,时,解在-∞<x<+∞,0≤εt≤T内一致有界;(2)R(u)=-Δ(εt)uxxx,Δ(0)=0,Δ(s)∈C1[0,+∞), 解在-∞<x<+∞,0≤εt≤T,0≤ε≤ε1内一致有界.

KdV方程、先验估计、扰动的孤立波

34

O1(数学)

教育部留学回国人员科研启动基金JLX200406

2007-03-05(万方平台首次上网日期,不代表论文的发表时间)

共4页

109-112

暂无封面信息
查看本期封面目录

北京化工大学学报(自然科学版)

1671-4628

11-4755/TQ

34

2007,34(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn