期刊专题

10.13209/j.0479-8023.2022.081

基于可融合残差卷积块的深度神经网络模型层剪枝方法

引用
针对当前主流的剪枝方法所获得的压缩模型推理时间较长和效果较差的问题,提出一种易用且性能优异的层剪枝方法.该方法将原始卷积层转化为可融合残差卷积块,然后通过稀疏化训练的方法实现层剪枝,得到一种具有工程易用性的层剪枝方法,兼具推理时间短和剪枝效果好的优点.实验结果表明,在图像分类任务和目标检测任务中,该方法可使模型在精度损失较小的情况下获得极高的压缩率,优于先进的卷积核剪枝方法.

卷积神经网络、层剪枝、可融合残差卷积块、稀疏化训练、图像分类

58

TP391.41;TP183;TN912.34

国家重点研发计划2018YFE0203801

2022-10-13(万方平台首次上网日期,不代表论文的发表时间)

共7页

801-807

相关文献
评论
暂无封面信息
查看本期封面目录

北京大学学报(自然科学版)

0479-8023

11-2442/N

58

2022,58(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn