期刊专题

10.11713/j.issn.1009-4822.2017.04.029

参数优化支持向量机的农业大棚温室温度预测模型

引用
利用支持向量机核函数linear,polynomial,radial basis function和sigmoid,通过粒子群算法对惩罚参数c和gamma寻优,建立农业大棚温室温度预测模型.试验结果表明:通过粒子群算法设定惩罚参数c为14.392,gamma为0.01时,得到的P_RBF预测模型对由24个测试时间所测数据组成的训练集拟合程度达90.849%,对加入随机影响因子的由5个测试时间所测数据组成的预测集拟合程度达90.545%,显示该预测模型具备相当的鲁棒性;P_RBF模型对温室内温度预测具备相当的可靠性,可以准确预测温室内温度变化趋势,解决温室控制系统中温度难以预测的问题.

粒子群算法、支持向量机、农业大棚温室

18

TP391.4(计算技术、计算机技术)

2017-07-13(万方平台首次上网日期,不代表论文的发表时间)

共4页

557-560

暂无封面信息
查看本期封面目录

北华大学学报(自然科学版)

1009-4822

22-1316/N

18

2017,18(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn