期刊专题

10.3969/j.issn.1001-5477.2014.03.002

基于稀疏表示的人脸图像压缩方法

引用
基于稀疏表示的人脸图像压缩算法首先对人脸图像进行分块,其次利用K-SVD字典学习算法,训练一个图像的冗余字典,最后用OMP算法对其进行稀疏编码,得到压缩的图像.由于OMP算法复杂度较高,为了降低复杂度,提高算法效率,提出了一种基于稀疏表示理论的新的人脸压缩算法.该算法在稀疏编码阶段,用基于块坐标松弛(Block Coordinate Relation)字典学习算法对人脸图像进行稀疏编码,最后用重构算法对压缩数据进行重构.通过实验仿真,与JPEG压缩方法及OMP算法比较,所提方法在同等压缩比下,重构的图像质量有所提高.

人脸压缩、稀疏表示、块坐标松弛

26

TP391.4(计算技术、计算机技术)

国家自然科学基金项目61170327

2014-11-18(万方平台首次上网日期,不代表论文的发表时间)

共6页

6-10,61

暂无封面信息
查看本期封面目录

北方工业大学学报

1001-5477

11-2555/TF

26

2014,26(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn