期刊专题

10.3969/j.issn.1008-6021.2009.02.035

实数连续性等价性命题的证明

引用
以戴德金分划说为基础来研究实数的连续性,对于实数连续性的九个等价性命题:确界定理、戴德金定理、单调有界定理、区间套定理、有限覆盖定理、聚点定理、致密性定理、柯西收敛准则以及Botsko定理,采用循环论证,从命题1出发,依次证明下一命题,最后由命题9证明命题1,从而组成一个环路,证明了它们的等价性.

实数连续性、单调有界、区间套、聚点

O174(数学分析)

2009-07-17(万方平台首次上网日期,不代表论文的发表时间)

共4页

125-128

相关文献
评论
暂无封面信息
查看本期封面目录

安徽广播电视大学学报

1008-6021

34-1171/G4

2009,(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn